固有的图像分解是一个重要且长期存在的计算机视觉问题。给定输入映像,恢复物理场景属性的定位不足。几个出于身体动机的先验已被用来限制固有图像分解的优化问题的解决方案空间。这项工作利用了深度学习的优势,并表明它可以以高效率解决这个具有挑战性的计算机视觉问题。焦点在于特征编码阶段,从输入图像中提取不同固有层的区分特征。为了实现这一目标,我们探讨了高维特征嵌入空间中不同内在组件的独特特性。我们定义特征分布差异,以有效地分离不同内在组件的特征向量。功能分布也受到限制,以通过特征分布一致性符合真实的分布。此外,还提供了一种数据完善方法来消除Sintel数据集中的数据不一致,使其更适合固有图像分解。我们的方法还扩展到基于相邻帧之间像素的对应关系的固有视频分解。实验结果表明,我们提出的网络结构可以胜过现有的最新最新。
translated by 谷歌翻译
深度神经网络(DNN)已在脑病变检测和分割中广泛采用。但是,在2D MRI切片中定位小病变是具有挑战性的,需要在3D上下文聚集的粒度和计算复杂性之间取得平衡。在本文中,我们提出了一种新型的视角变压器,以增强MRI特征的提取,以进行更准确的肿瘤检测。首先,所提出的变压器在3D脑扫描中收获了不同位置之间的远程相关性。其次,变压器将一堆切片功能堆叠为多个2D视图,并增强这些特征的视图,该功能大致以有效的方式实现了3D相关计算。第三,我们将提出的变压器模块部署在变压器主链中,该模块可以有效地检测到脑损伤周围的2D区域。实验结果表明,我们提出的观看式变压器在具有挑战性的大脑MRI数据集上对大脑病变检测表现良好。
translated by 谷歌翻译
步态情绪识别在智能系统中起着至关重要的作用。大多数现有方法通过随着时间的推移专注于当地行动来识别情绪。但是,他们忽略了时间域中不同情绪的有效距离是不同的,而且步行过程中的当地行动非常相似。因此,情绪应由全球状态而不是间接的本地行动代表。为了解决这些问题,这项工作通过构建动态的时间接受场并设计多尺度信息聚集以识别情绪,从而在这项工作中介绍了新型的多量表自适应图卷积网络(MSA-GCN)。在我们的模型中,自适应选择性时空图卷积旨在动态选择卷积内核,以获得不同情绪的软时空特征。此外,跨尺度映射融合机制(CSFM)旨在构建自适应邻接矩阵,以增强信息相互作用并降低冗余。与以前的最先进方法相比,所提出的方法在两个公共数据集上实现了最佳性能,将地图提高了2 \%。我们还进行了广泛的消融研究,以显示不同组件在我们的方法中的有效性。
translated by 谷歌翻译
单步反转合作是逆合合成计划的基石,这是计算机辅助药物发现的至关重要的任务。单步回合合成的目的是确定导致一个反应中靶产物合成的可能反应物。通过将有机分子表示为规范串,现有的基于序列的折叠方法将乘积 - 反应性逆合合成视为序列到序列翻译问题。但是,由于确定性推断,他们中的大多数人都难以识别所需产物的多种化学反应,这与以下事实相矛盾:许多化合物可以通过各种反应类型与不同的反应物组成。在这项工作中,我们旨在增加反应多样性并使用离散的潜在变量产生各种反应物。我们提出了一种基于序列的新方法,即RetrodVcae,该方法将条件变分自动化码器纳入单步回逆转录中,并将离散的潜在变量与生成过程相关联。具体而言,RetroDVCAE使用Gumbel-Softmax分布来近似于潜在反应的分类分布,并生成与变异解码器的多组反应物。实验表明,RetroDVCAE在基准数据集和自制数据集上的最先进基准均优于最先进的基线。定量和定性结果都表明,转化vcae可以在反应类型上对多模式分布进行建模,并产生各种反应物候选物。
translated by 谷歌翻译
在3D形状分析的区域中,长期以来已经研究了形状的几何特性。本文专用于从形状形成过程中发现独特信息,而不是使用专业设计的描述符或端到端深神经网络直接提取代表功能。具体地,用作模板的球形点云逐渐变形以以粗细的方式拟合目标形状。在形状形成过程中,插入若干检查点以便于记录和研究中间阶段。对于每个阶段,偏移字段被评估为舞台感知的描述。整个形状形成过程的偏移的求和可以在几何形状方面完全定义目标形状。在这种观点中,人们可以廉价地从模板导出从模板的点亮形状对应,这有利于各种图形应用。在本文中,提出了基于逐行变形的自动编码器(PDAE)来通过粗到细小的形状拟合任务来学习舞台感知的描述。实验结果表明,所提出的PDAE具有重建高保真度的3D形状的能力,在多级变形过程中保留了一致的拓扑。执行基于舞台感知描述的其他应用程序,展示其普遍性。
translated by 谷歌翻译
现代深度学习(DL)架构使用使用$ \ Texit运行的SGD算法的变体训练训练{手动} $定义的学习率计划,即,在预定义的时期删除了学习率,通常在训练时损失预计会饱和。在本文中,我们开发了一种实现学习率下降$ \ Texit {自动} $的算法。所提出的方法,即我们称为Autodrop,通过观察到模型参数的角速度,即收敛方向的变化的速度,用于固定学习速率最初迅速增加,然后朝向软饱和。在饱和时,优化器减慢,因此角速度饱和度是用于降低学习率的良好指标。在下降之后,角速度“重置”并遵循先前描述的图案 - 它再次增加,直到饱和度。我们表明,我们的方法改善了SOTA培训方法:它加快了对DL模型的培训并导致更好的概括。我们还表明,我们的方法不需要任何额外的额外的覆盖器调整。 AutoDrop进一步实现和计算方式非常简单。最后,我们开发了一个分析我们算法的理论框架,并提供了收敛保证。
translated by 谷歌翻译
受到深入学习的巨大成功通过云计算和边缘芯片的快速发展的影响,人工智能研究(AI)的研究已经转移到计算范例,即云计算和边缘计算。近年来,我们目睹了在云服务器上开发更高级的AI模型,以超越传统的深度学习模型,以造成模型创新(例如,变压器,净化家庭),训练数据爆炸和飙升的计算能力。但是,边缘计算,尤其是边缘和云协同计算,仍然在其初期阶段,因为由于资源受限的IOT场景,因此由于部署了非常有限的算法而导致其成功。在本调查中,我们对云和边缘AI进行系统审查。具体而言,我们是第一个设置云和边缘建模的协作学习机制,通过彻底的审查使能够实现这种机制的架构。我们还讨论了一些正在进行的先进EDGE AI主题的潜在和实践经验,包括预先训练模型,图形神经网络和加强学习。最后,我们讨论了这一领域的有希望的方向和挑战。
translated by 谷歌翻译
我们研究了深层神经网络的表达能力,以在扩张的转移不变空间中近似功能,这些空间被广泛用于信号处理,图像处理,通信等。相对于神经网络的宽度和深度估算了近似误差界限。网络构建基于深神经网络的位提取和数据拟合能力。作为我们主要结果的应用,获得了经典函数空间(例如Sobolev空间和BESOV空间)的近似速率。我们还给出了$ l^p(1 \ le p \ le \ infty)$近似误差的下限,这表明我们的神经网络的构建是渐近的最佳选择,即最大程度地达到对数因素。
translated by 谷歌翻译
The rapid development of remote sensing technologies have gained significant attention due to their ability to accurately localize, classify, and segment objects from aerial images. These technologies are commonly used in unmanned aerial vehicles (UAVs) equipped with high-resolution cameras or sensors to capture data over large areas. This data is useful for various applications, such as monitoring and inspecting cities, towns, and terrains. In this paper, we presented a method for classifying and segmenting city road traffic dashed lines from aerial images using deep learning models such as U-Net and SegNet. The annotated data is used to train these models, which are then used to classify and segment the aerial image into two classes: dashed lines and non-dashed lines. However, the deep learning model may not be able to identify all dashed lines due to poor painting or occlusion by trees or shadows. To address this issue, we proposed a method to add missed lines to the segmentation output. We also extracted the x and y coordinates of each dashed line from the segmentation output, which can be used by city planners to construct a CAD file for digital visualization of the roads.
translated by 谷歌翻译
分类激活图(CAM),利用分类结构来生成像素定位图,是弱监督物体定位(WSOL)的关键机制。但是,CAM直接使用对图像级特征训练的分类器来定位对象,从而更喜欢辨别全局歧视性因素,而不是区域对象提示。因此,在将像素级特征馈入此分类器时,只有判别位置才能激活。为了解决此问题,本文详细阐述了一种称为Bagcams的插件机制,以更好地投射训练有素的本地化任务分类器,而无需完善或重新训练基线结构。我们的手袋采用了拟议的区域定位器(RLG)策略来定义一组区域本地化,然后从训练有素的分类器中得出。这些区域本地化可以被视为基础学习者,只能辨别出针对本地化任务的区域对象因素,而我们的袋子可以有效地加权其结果以形成最终的本地化图。实验表明,采用我们提出的口袋可以在很大程度上提高基线WSOL方法的性能,并在三个WSOL基准上获得最先进的性能。代码可在https://github.com/zh460045050/bagcams上发布。
translated by 谷歌翻译